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ABSTRACT
The vulnerability of deep neural networks has gained a great up-
surge of research attention, which engages well-designed examples
through adding little perturbations to fool a well-performed net-
work. Meanwhile, a progress has been made in leveraging adversar-
ial examples to boost the robustness of deep cross-modal networks.
However, for cross-modal learning, both the causes of adversar-
ial examples and their latent advantages in learning cross-modal
correlations are under-explored. In this paper, we propose novel Dis-
entangled Adversarial examples for Cross-Modal learning, dubbed
DACM. Specifically, we first divide cross-modal data into two as-
pects, namely modality-related component and modality-unrelated
counterpart, and then learn to improve the reliability of network
using the modality-related component. To achieve this goal, we
apply the generation of adversarial perturbations to strengthen
cross-modal correlations, wherein the modality-related component
is acquired through gradually detaching the modality-unrelated
component. Finally, the proposed DACM is employed to create
modality-related examples towards the application of cross-modal
hashing retrieval. Extensive experiments carried out on two cross-
modal benchmarks show that the adversarial examples learned by
DACM are efficient at fooling a target deep cross-modal hashing
network. On the other hand, training this target model by merely
leveraging our created modality-related examples in turn signifi-
cantly promotes the robustness of this model itself.

KEYWORDS
Cross-Modal Learning; Deep Learning; Adversarial Example;

Cross-Modal Retrieval; Hash Code Learning
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403084

ACM Reference Format:
Chao Li, Haoteng Tang, Cheng Deng, Liang Zhan, andWei Liu. 2020. Vulner-
ability vs. Reliability: Disentangled Adversarial Examples for Cross-Modal
Learning. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, CA,
USA. 9 pages. https://doi.org/10.1145/3394486.3403084

1 INTRODUCTION
Cross-modal learning has already become a prime technology to
approach the applications of massive multimedia data, such as cross-
modal retrieval [21, 40, 48], image captioning [35, 39], text-to-image
synthesis [41, 51], and visual query answering [2, 50]. These various
cross-modal learning tasks share a common challenge, exploiting
latent cross-modal correlations to associate different modalities.

Recently, many kinds of deep networks [15, 17, 44] have emerged
as powerful yet efficient models to tackle a broad spectrum of com-
plex learning problems, and thus deep network-based methods (e.g.,
deep learning, deep reinforcement learning, and deep transfer learn-
ing) greatly improve the performances for kinds of cross-modal
applications. Even so, it remains a fresh topic that deep cross-modal
networks are vulnerable against adversarial examples, which can
easily fool a well-performed deep model with little perturbations
imperceptible to humans [13, 16, 25, 34, 36–38, 45–47, 52].

In the cross-modal learning area, neither the causes of adversar-
ial examples nor their roles in building cross-modal correlations
have been explicitly delineated in previous works. Considering the
diversity tasks engaging cross-modal learning, this paper dedicates
to hashing-based cross-modal retrieval between image and text
as an example for a better understanding. As shown in Fig. 1, to
generate reliable cross-modal hash codes, the regular methods are
generally over-reliant on deep networks to pursue the correlations
between different modalities, which easily results in the model
vulnerability. However, in essence, beyond the modality-related
component, the modality-unrelated counterpart hidden in the orig-
inal cross-modal data always makes an impediment to building
reliable cross-modal correlations, which thus should be filtered
out. To address this problem, a possible manner is to remove the
modality-unrelated component in an adversarial learning fashion.
Inspired by the generation of adversarial examples that attack a
target deep network by adding learned adversarial perturbations
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Figure 1: (a) The regular cross-modal learning simply con-
siders the cross-modal data as a whole and relies on train-
ing deep networks to build cross-modal correlations. (b) In
this work, we introduce a new perspective to learn the cross-
modal correlations by exploring the modality-related com-
ponent.

into original data, we disentangle the modality-unrelated compo-
nent from original data following an exactly opposite manner. To
be specific, we make the modality-unrelated component serve as
the adversarial perturbation which will be leveraged to construct
adversarial examples. In this way, the modality-related component
for original cross-modal data can be obtained by filtering out the
modality-unrelated counterparts. As a result, a new training dataset
consisting of the modality-related examples is created. Using the
newly created dataset to train the deep cross-modal network, high
robustness and even better retrieval performance in contrast to the
original training dataset can be harvested simultaneously.

In this paper, we present the Disentangled Adversarial examples
for Cross-Modal learning (DACM), which provides new insight
into adversarial examples in discovering the correlations for cross-
modal learning. Specifically, our DACM acquires modality-related
component across different modalities through a newly proposed
adversarial learning method which removes modality-unrelated
counterparts by optimizing adversarial perturbations. The high-
lights of our work can be summarized as follows:

• We present a novel perspective of adversarial examples in
learning modality-related representations between different
modalities, which corroborates that cross-modal adversarial
examples are mainly produced by over pursuing cross-modal
consistency but ignoring its divergence.

• We propose a simple yet effective disentangled cross-modal
adversarial examples learning method, where the adversarial
examples andmodality-related representations are learned in
a unified framework by disentangling themodality-unrelated
representations from the original data.

• We take cross-modal hashing retrieval as an application to
evaluate the proposed DACM. Experiments on two widely-
used cross-modal retrieval benchmarks show the effective-
ness of our DACM in learning modality-related representa-
tions from the original cross-modal data and further improv-
ing the retrieval robustness.

The remainder of this paper is structured as follows. First, we briefly
introduce and discuss representative methods for adversarial at-
tacks and conducting cross-modal hashing learning in Section 2.

Then we elaborate on the motivation and basic ideas of our method
in Section 3. Section 4 provides experiments of our method, and
finally, Section 5 draws the conclusions.

2 RELATEDWORKS
Adversarial Examples. Adding small carefully crafted perturba-
tions called adversarial perturbations into original data, Szegedy et
al. [47] recast the data to adversarial examples, and then fed them
into a target deep network, which can easily drive the target deep
model to a wrong prediction. Following this, various attacks are
presented, e.g., iterative fast gradient sign method (IFGSM) [22],
one pixel attack [45], Carlini and Wagner attack [6], and universal
attack [37]. However, these methods mainly focus on the applica-
tions of single modality tasks, such as image classification. Recently,
aiming to cross-modal learningwhich is amore complex case, Show-
and-Fool [7] is proposed to attack an image captioning system by
executing visual language grounding. Xu et al. [54] dedicated exact
adversarial attacks of targeted partial captions. Xu et al. [53] studied
adversarial examples for visual question answering. On the other
hand, by virtue of the learned adversarial examples, a robust model
can further be implemented. Chen et al. [8] presented to learn ad-
versarial examples to augment visual-semantic training samples,
thus improve the reliability of their target model. However, more
efforts are needed to investigate how adversarial examples affect
deep networks for other cross-modal tasks such as cross-modal
retrieval.

Cross-Modal Hashing. Comparing with typical single-modal
hashing [11, 12, 26, 28–31, 42, 57], when dealing with large-scale
cross-modal data, two challenges arise from two aspects: the tremen-
dous data volume and the heterogeneity between different modali-
ties. To address them, plenty of cross-modal hashing methods are
presented [4, 5, 19, 20, 24, 27, 32, 49, 58]. Depending on whether to
use deep networks or not, these methods can be grouped into two
categories: hand-crafted feature based cross-modal hashing and
deep-feature based counterparts. Compared with the hand-crafted
feature based methods, deep hashing methods are built upon deep
neural networks that holding superior nonlinear approximation
capacity in building correlations between different modalities, and
thus always achieve more appealing performance. Inspired by this,
the constraints of pairwise loss [19], triplet loss [10], and rank
loss [33] are further injected into deep models to facilitate the
building of cross-modal correlations. Taking tag information of
image as supervision, WDHT [14] is proposed to learn hash codes
by using tag embedding in a weakly supervised fashion. Deep
joint semantics reconstructing hashing (DJSRH) [43] studies joint
correlations between different modalities by fusing multiple sim-
ilarity relationships. However, these methods maximally pursue
the modality-related correlations while neglecting the effect of the
modality-unrelated ones. On the contrary, ADAH [9] constructs an
attention mask to focus on more informative parts of multi-modal
data. SPDQ [55] utilizes a deep network to project cross-modal data
onto two feature spaces, where cross-modal shared and intra-modal
private representations are learned individually.

The recently proposed CMLA [23], which focuses on designing
cross-modal adversarial examples, is also related to the proposed
DACM. However, the proposed method has great differences with
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Figure 2: The pipeline of our proposed DACM for cross-modal hashing consisting of three parts: modality-related example dis-
entangling, target cross-modal hashing network to generate hash codes for image and text, and cross-modal related similarity
regularization.

CMLA in the following three aspects. 1) CMLA learns adversarial
examples aiming to attack a target deep cross-modal network, while
DACM uses adversarial examples to extract modality-related repre-
sentations. 2) To improve the particular capability of the adversar-
ial examples in attacking cross-modal retrieval without damaging
intra-modal retrieval performance, CMLA learns adversarial exam-
ples by decreasing the inter-modality similarity and simultaneously
keeping intra-modality similarity. In contrast, DACM dedicates to
disentangling the modality-related representations from original
cross-modal data rather than the intra-modal correlations, which
has an essential difference with CMLA. 3) To improve the robust-
ness of a target model, CMLA has to merge the adversarial examples
with original training samples and retrain the target model, which
causes inefficiency. DACM creates the new training dataset consist-
ing of modal-related examples and thus can achieve the same goal
by only execute the regular training. Therefore, different from previ-
ous methods, DACM takes a fresh look at the adversarial examples
and their ability to build cross-modal correlations.

3 PROPOSED DACM
Fig. 2 shows the overall flowchart of the proposed DACM includ-
ing three parts: modality-related example disentangling, target
cross-modal hashing network to generate hash codes for image
and text modality, and cross-modal related similarity regularization.
For each original cross-modal data pair {𝑜𝑣, 𝑜𝑡 } as input, in the
modality-related example disentangling, we initialize two perturba-
tions {𝛿𝑣, 𝛿𝑡 } to create adversarial example {𝑜𝑣, 𝑜𝑡 } by adding the
perturbation into the original sample and create modality-related
example {𝑜𝑣, 𝑜𝑡 } by subtracting the perturbation from the original
sample, respectively. Then, feeding the original cross-modal data,
adversarial example, and modality-related example into the given

target cross-modal hashing network, we can obtain their corre-
sponding hash codes𝐻∗, �̆�∗, and �̂�∗, where ∗ ∈ {𝑣, 𝑡}. Following, a
cross-modal related similarity regularization is designed to learn the
effective perturbations by making adversarial examples decrease re-
trieval accuracy while modality-related examples increase retrieval
accuracy. Finally, utilizing the learned modality-related examples,
we can further train a crude deep cross-modal hashing network ef-
fectively. In other words, the cross-modal correlation exploring task
is reformulated as a new adversarial examples learning problem
in this paper. Next, the novel disentangled adversarial examples
learning method shown in Fig. 2, is introduced in this session.

3.1 Problem Definition
Cross-modal hashing aims to produce binary hash codes 𝐵∗ ∈
{−1, 1}𝐾 for different modality data by learning hash functions
H∗, where 𝐾 is code length, and ∗ ∈ {𝑣, 𝑡} denotes image and text
modality. For a better understanding of the proposed method, we
first describe some notations. Let 𝑂 = {𝑜𝑖 }𝑁𝑖=1 be a cross-modal
dataset with 𝑁 data points, and 𝑜𝑖 = {𝑜𝑣

𝑖
, 𝑜𝑡
𝑖
} represents the 𝑖th

cross-modal data. 𝑜𝑣
𝑖
and 𝑜𝑡

𝑖
respectively denotes image and text

representation of 𝑜𝑖 , and are annotated with identical labels. 𝑆
is a pairwise similarity matrix that describes semantic similarity
between each pair of cross-modal data, where 𝑆𝑖 𝑗 = 1 means that
𝑜𝑖 and 𝑜 𝑗 are semantically similar, otherwise 𝑆𝑖 𝑗 = 0. Following the
multi-label setting in previous methods [4, 10, 19], we set 𝑆𝑖 𝑗 = 1
when 𝑜𝑖 and 𝑜 𝑗 share at least one label, otherwise 𝑆𝑖 𝑗 = 0. In a deep
hashing method, two neural networks are usually constructed to
serve as hash functions {H 𝑣,H𝑡 }. We denote the outputs of the
hash functions as the hash codes {𝐻 𝑣 = H 𝑣 (𝑜𝑣), 𝐻𝑡 = H𝑡 (𝑜𝑡 }.
Finally, the binary hash codes 𝐵∗ are obtained by applying a sign
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function to {𝐻 𝑣, 𝐻𝑡 }:
𝐵∗ = 𝑠𝑖𝑔𝑛(𝐻∗), ∗ ∈ {𝑣, 𝑡}. (1)

For deep hashing networks H∗ (𝑜∗, \∗), let \∗ be network parame-
ters. To train a deep cross-modal model for regular retrieval, the
deep cross-modal hashing network is encouraged to output similar
hash codes for semantically similar data, which can be written as
follows:

min
\ 𝑣 ,\𝑡

𝐷
(
H 𝑣 (𝑜𝑣 ;\ 𝑣),H𝑡 (𝑜𝑡 ;\𝑡 )

)
, (2)

where 𝐷 (·, ·) is a distance measure such as Hamming distance.
In this paper, the proposed DACM aims to explore adversarial

perturbations {𝛿𝑣, 𝛿𝑡 }, which can result in the decline (increasing)
of retrieval accuracy by adding (removing) the perturbations. Given
a semantically similar cross-modal data pair {𝑜𝑣, 𝑜𝑡 }, to better un-
derstand the proposed DACM, we take the image-query-text task
for example. The learning of image adversarial perturbation can be
defined as follows:

△(𝑜𝑣, 𝑜𝑡 ,H 𝑣,H𝑡 ) := min
𝛿𝑣

𝛿𝑣
𝑝
,

𝑠 .𝑡 . min
𝛿𝑣

𝐷
(
H 𝑣 (𝑜𝑣 − 𝛿𝑣 ;\ 𝑣),H𝑡 (𝑜𝑡 ;\𝑡 )

)
−

𝐷
(
H 𝑣 (𝑜𝑣 + 𝛿𝑣 ;\ 𝑣),H𝑡 (𝑜𝑡 ;\𝑡 )

)
, ∥𝛿𝑣 ∥𝑝 ≤ 𝜖𝑣,

(3)

where 𝜖𝑣 denotes the maximal disentangled strength, and ∥·∥𝑝
denotes 𝐿𝑝 norm (𝑝 = ∞ in this paper), measuring the difference
between the adversarial example and the original data.

3.2 Disentangled Adversarial Example
Learning

The proposed DACM seeks for the perturbations {𝛿𝑣, 𝛿𝑡 } to con-
struct modality-related examples {𝑜𝑣, 𝑜𝑡 } and adversarial examples
{𝑜𝑣, 𝑜𝑡 } by removing and adding operation as follows:

𝑜𝑣 = 𝑜𝑣 − 𝛿𝑣, 𝑜𝑡 = 𝑜𝑡 − 𝛿𝑡 ;
𝑜𝑣 = 𝑜𝑣 + 𝛿𝑣, 𝑜𝑡 = 𝑜𝑡 + 𝛿𝑡 .

(4)

For a cross-modal data pair {𝑜𝑣, 𝑜𝑡 }with short distance in Hamming
space, we disentangle the cross-modal related representations by
learning adversarial perturbations {𝛿𝑣, 𝛿𝑡 }. During this learning
process, the adversarial examples {𝑜𝑣, 𝑜𝑡 } are pushed away from
the data that sharing similar semantics with them, at the same time
maintaining the modality-related examples {𝑜𝑣, 𝑜𝑡 } to be close to
their semantically similar data.

Similarly, taking image-query-text task for example, there should
be a long Hamming distance 𝐷

(
H 𝑣 (𝑜𝑣 ;\ 𝑣),H𝑡 (𝑜𝑡 ;\𝑡 )

)
between

the hash codes that generated from the image adversarial example
𝑜𝑣 and that from the original text 𝑜𝑡 . In contrast, it is expected a
short Hamming distance 𝐷

(
H 𝑣 (𝑜𝑣 ;\ 𝑣),H𝑡 (𝑜𝑡 ;\𝑡 )

)
between hash

codes that generated from the image modality-related example
𝑜𝑣 and that from the original text 𝑜𝑡 . Ideally, modality-related ex-
amples should be assigned identical hash codes with original data,
while adversarial examples should be assigned totally different hash
codes with original data. However, considering that the optimiza-
tion in binary code learning is intractable, a simple yet effective
disentangled learning method based on a similarity loss is proposed.
The loss function consists of two terms: one aims to maximize the
similarity between the hash codes that produced from the original
text and that from the image modality-related examples; the other

one is designed to minimize similarity between the hash codes that
produced from the original text and that from the image adversarial
examples. The loss function is formulated as follows:

min
𝛿𝑣

J 𝑣 =
1
𝑁 2

©«
𝑁∑
𝑖, 𝑗=1

(
𝑆𝑖 𝑗 Γ𝑖 𝑗 + log(1 + 𝑒−Γ𝑖 𝑗 )

)
−

𝑁∑
𝑖, 𝑗=1

(
𝑆𝑖 𝑗Θ𝑖 𝑗 − log(1 + 𝑒Θ𝑖 𝑗 )

)ª®¬ , 𝑠 .𝑡 . ∥𝛿𝑣 ∥∞ ≤ 𝜖𝑣,

(5)
where Γ is defined as 1

2 (�̆�
𝑣) (𝐻𝑡 )⊤ to approximate the Hamming

similarity between the image adversarial examples and the original
text, and Θ = 1

2 (�̂�
𝑣) (𝐻𝑡 )⊤ stands for the Hamming similarity be-

tween the imagemodality-related examples and the original text. To
learn 𝛿𝑣 , we make the Hamming distance between the manipulated
image and the original text become longer when adding 𝛿𝑣 into the
original image, while becoming shorter when subtracting 𝛿𝑣 . That
is to say, the modality-unrelated representation is disentangled
from cross-modal data in the progress of learning perturbations.

Accordingly, for the image retrieval using text query, the loss
function can be written as follows:

min
𝛿𝑡

J 𝑡 =
1
𝑁 2

©«
𝑁∑
𝑖, 𝑗=1

(
𝑆𝑖 𝑗Υ𝑖 𝑗 + log(1 + 𝑒−Υ𝑖 𝑗 )

)
−

𝑁∑
𝑖, 𝑗=1

(
𝑆𝑖 𝑗Ψ𝑖 𝑗 − log(1 + 𝑒Ψ𝑖 𝑗 )

)ª®¬ , 𝑠 .𝑡 . ∥𝛿𝑡 ∥∞ ≤ 𝜖𝑡 ,

(6)
where Υ = 1

2 (�̆�
𝑡 ) (𝐻 𝑣)⊤ and Ψ = 1

2 (�̂�
𝑡 ) (𝐻 𝑣)⊤.

In this way, two kinds of adversarial perturbations for different
modalities are learned, respectively. At first sight, two adversarial
perturbations are learned independently. Actually, the hash codes
𝐻 𝑣 and 𝐻𝑡 , which are generated by a well-performed target model,
naturally preserve the cross-modal similarity correlations. There-
fore, taking 𝐻 𝑣 and 𝐻𝑡 as supervisions, the proposed DACM can
simultaneously learn adversarial examples and modality-related
examples effectively.

3.3 Optimization
Given a target deep hashing network such as DCMH [19] denoted
as 𝐹 (𝑜𝑣, 𝑜𝑡 ;\ 𝑣, \𝑡 ) and image-text pairs {𝑜𝑣, 𝑜𝑡 }, we randomly ini-
tialized perturbations {𝛿𝑣, 𝛿𝑡 }, and create {𝑜𝑣, 𝑜𝑡 } and {𝑜𝑣, 𝑜𝑡 } by
Eq. (4). The hash codes {𝐻 𝑣, 𝐻𝑡 } for {𝑜𝑣, 𝑜𝑡 } are calculated by for-
ward propagation. With {𝐻 𝑣, 𝐻𝑡 }, we learn the adversarial exam-
ples and the modality-related examples simultaneously by minimiz-
ing Eq. (5) and Eq. (6) using a back-propagation (BP) algorithm:

𝛿𝑣 = arg min
𝛿𝑣

𝐽 𝑣 (𝛿𝑣, 𝑜𝑣, 𝑜𝑣, 𝐻𝑡 ;\ 𝑣), 𝑠 .𝑡 . ∥𝛿𝑣 ∥∞ ≤ 𝜖𝑣 ;

𝛿𝑡 = arg min
𝛿𝑡

𝐽 𝑡 (𝛿𝑡 , 𝑜𝑡 , 𝑜𝑡 , 𝐻 𝑣 ;\𝑡 ), 𝑠 .𝑡 . ∥𝛿𝑡 ∥∞ ≤ 𝜖𝑡 ,
(7)

where the modality-related representations {𝑜𝑣, 𝑜𝑡 } thus can be
disentangled from the original cross-modal data. The details of
training the proposed DACM are summarized in Algorithm 1.
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Algorithm 1: Disentangled Adversarial Examples for
Cross-Modal Learning (DACM).
Input: Target deep cross-modal hashing model: H∗ (𝑜∗, \∗),

∗ ∈ {𝑣, 𝑡}, and a cross-modal dataset: {𝑜𝑣
𝑖
, 𝑜𝑡
𝑖
}𝑁
𝑖=1

Output: The optimal modality-related examples: 𝑜𝑣 and 𝑜𝑡
1 Maximum iteration: 𝑇𝑚𝑎𝑥 , disentangled strength: {𝜖𝑣, 𝜖𝑡 },

batch_size: 128, 𝑛 = ⌈𝑁 /128⌉
2 for 𝑗 = 1; 𝑗 ≤ 𝑛; do
3 Initialize 𝑖𝑡𝑒𝑟 = 0
4 Compute 𝐻 𝑣 and 𝐻𝑡 by forward propagation:
5 𝐻 𝑣 = H 𝑣 (𝑜𝑣, \ 𝑣); 𝐻𝑡 = H𝑡 (𝑜𝑡 , \𝑡 )
6 while iter ≤ 𝑇𝑚𝑎𝑥 do
7 if not converged then
8 Update 𝛿𝑣 and 𝛿𝑡 by back propagation:
9 𝛿𝑣 = arg min𝛿𝑣 𝐽 𝑣 (𝛿𝑣, 𝑜𝑣, 𝑜𝑣, 𝐻𝑡 ;\ 𝑣);

10 𝛿𝑡 = arg min𝛿𝑡 𝐽 𝑡 (𝛿𝑡 , 𝑜𝑡 , 𝑜𝑡 , 𝐻 𝑣 ;\𝑡 )
11 Clip 𝛿𝑣 to range [0, 𝜖𝑣]; clip 𝛿𝑡 to range [0, 𝜖𝑡 ]
12 end
13 end
14 Clip 𝑜𝑣 to range [0, 255]; clip 𝑜𝑡 to range [0, 1]
15 end
16 Return modality-related examples 𝑜𝑣 and 𝑜𝑡 .

Inputting the learned 𝑜𝑣 and 𝑜𝑡 into a target model, we train the
target model by using a BP algorithm:

\ 𝑣, \𝑡 = arg min
\ 𝑣 ,\𝑡

𝐹 (𝑜𝑣, 𝑜𝑡 ;\ 𝑣, \𝑡 ) . (8)

In this way, both the retrieval efficiency of the target model and its
defense against adversarial attacks can be acquired simultaneously.

3.4 Implementation Details
All the codes of the proposed DACM are implemented via Tensor-
Flow [1] and executed on a server with two NVIDIA Tesla P40 GPUs
with a graphics memory capacity of 24GB for each one. The normal-
ized images size is 224 × 224 × 3. For learning adversarial examples,
we adopt Adam optimizer with an initial learning rate 0.1 and train
each sample for 𝑇𝑚𝑎𝑥 iterations, 𝑇𝑚𝑎𝑥 ∈ {50, 100, 500, 2000}. Mini-
batch size is fixed at 128. 𝜖𝑣 is set to 8 for image modality, and
𝜖𝑡 is set to 0.03 for text modality. After adversarial examples and
modality examples are generated, we clip image into [0, 255] and
clip text into [0, 1].

4 EXPERIMENTS
4.1 Experimental Setup
In this section, we evaluate the proposed method DACM with three
state-of-the-art deep cross-modal hashing networks on two bench-
mark datasets: MIRFlickr-25K [18] and NUS-WIDE [9].

MIRFlickr-25K [18] is collected from Flickr with 25, 000 images.
Each image is associated with a text description. In our experiments,
we totally select 20, 015 image-text pairs, and each image-text pair
is annotated with at least one of 24 unique labels. The text is rep-
resented by a 1, 386-dimensional bag-of-words vector for the text

modality. For the training of target models and the generation of
modality-related examples, we randomly select 5, 000 image-text
pairs as a training set. For the generation of adversarial examples,
we randomly select 1, 000 image-text pairs as the test set, while the
rest is used as the database.

NUS-WIDE [9] contains 269, 648 images collected from a public
web, where 81 ground-truth concepts are annotated for retrieval
evaluation. Following the setting in CMLA [23], we prune the data
that has no label or text information, then a subset of 190, 421 image-
text pairs that belong to the 21 most-frequent concepts are adopted
as our benchmark. The text is represented by a bag-of-words vector
with 1, 000 dimensions. To evaluate our DACM, 5, 000 and 2, 100
image-text pairs are randomly selected as the training set and the
test set, respectively, and the rest is used as the database.

Evaluation. Following previous works [3, 4, 27], three com-
monly used protocols in cross-modal retrieval: Mean Average Preci-
sion (MAP), precision-recall curve (PR curve), and Precision@1000
are adopted to evaluate the performances of our proposed DACM,
where Mean Average Precision (MAP) is used to measure the accu-
racy of the Hamming distances, precision-recall curve (PR curve) is
used to measure the accuracy of hash lookups, and Precision@1000
curve is used to evaluate the precision with respect to the num-
ber of top feedbacks. Besides, the distortion between the original
cross-modal data 𝑜∗ and the distorted one 𝑜∗ is measured as:

𝑃∗ =

√∑ (𝑜∗ − 𝑜∗)2

|𝑜∗ | , ∗ ∈ {𝑣, 𝑡 }. (9)

Here taking the MIRFlickr-25K dataset as an example, |𝑜𝑣 | and |𝑜𝑡 |
are the total pixel numbers of the original data, set as 150, 528(224 ∗
224∗3) and 1, 380 for image modality and text modality, respectively.

It should be noticed that the main goal of our work is to study a
novel cross-modal correlation learning method based on adver-
sarial examples rather than to focus on designing a new deep
cross-modal network. Therefore, to show the effectiveness of our
proposed DACM, three popular deep cross-modal hashing mod-
els DCMH [19], SSAH [24], and PRDH [56] are adopted as target
models, and we keep the identical network structures as reported
in their papers [19][24][56]. Their performances on the regular
retrieval and the defense to adversarial queries are provided, includ-
ing both the cases before and after training with modality-related
examples.

4.2 Performance Analysis
We evaluate the performances of our proposed DACM from two as-
pects: the adversarial examples and the modality-related examples.
For each evaluation on our benchmarks, two retrieval tasks are
executed, where ‘I –> T’ denotes retrieval text using image query,
and ‘T –> I’ denotes retrieval image using text query.

Adversarial Examples. Table 1 shows the attacking ability of
the learned adversarial examples on three target models, which are
denoted as DCMH-A, SSAH-A, and PRDH-A. Taking the results on
MIRFlickr-25K dataset as an example, it is obvious that the adver-
sarial examples learned with our DACM significantly decrease the
retrieval accuracy from 0.702(0.703), 0.742(0.748), 0.701(0.711) to
0.467(0.442), 0.449(0.405), 0.456(0.460), respectively, for DCMH-A,
SSAH-A, and PRDH-A on the image-query-text (text-query-image)
task. And, with increasing learning iterations, the retrieval accuracy
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Table 1: Attacking comparison in terms of MAP scores of two retrieval tasks on MIRFlickr-25K and NUS-WIDE datasets with
increasing adversarial learning iterations. The code length is set to 32 bits.

Task Method MIRFlickr-25K NUS-WIDE
0 50 100 500 2000 0 50 100 500 2000

I → T
DCMH-A 0.702 0.479 0.472 0.469 0.467 0.564 0.257 0.250 0.246 0.245
SSAH-A 0.742 0.484 0.465 0.451 0.449 0.637 0.289 0.233 0.245 0.214
PRDH-A 0.701 0.465 0.460 0.457 0.456 0.605 0.263 0.251 0.244 0.235

T → I
DCMH-A 0.703 0.448 0.444 0.442 0.442 0.583 0.324 0.319 0.319 0.319
SSAH-A 0.748 0.402 0.402 0.404 0.405 0.647 0.204 0.198 0.208 0.209
PRDH-A 0.711 0.463 0.460 0.459 0.460 0.612 0.373 0.370 0.370 0.368
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Figure 3: The tendency of loss and distortion indicator in disentangled learning on NUS-WIDE datasets.

Table 2: Attacking transferability comparison among different code lengths in terms of MAP scores of two retrieval tasks on
MIRFlickr-25K and NUS-WIDE datasets.

Task Method MIRFlickr-25K NUS-WIDE
8 16 32 64 8 16 32 64

I → T
DCMH-A 0.471 0.469 0.468 0.463 0.270 0.258 0.246 0.236
SSAH-A 0.452 0.449 0.450 0.461 0.282 0.245 0.245 0.242
PRDH-A 0.465 0.457 0.456 0.464 0.245 0.238 0.245 0.250

T→ I
DCMH-A 0.425 0.431 0.442 0.473 0.253 0.270 0.319 0.373
SSAH-A 0.512 0.516 0.497 0.488 0.459 0.445 0.444 0.434
PRDH-A 0.420 0.427 0.459 0.487 0.262 0.314 0.370 0.420

drops gradually, which means that more effective adversarial exam-
ples are being generated. Moreover, DACM declines the retrieval
accuracy of DCMH, SSAH, and PRDH by an average of 23%, 30%,
and 24%, respectively, within only 50 iterations. We additionally vi-
sualize the learning of the adversarial examples on the NUS-WIDE
dataset in Fig. 3. With the increase of the indicator P, which means
an enhanced deviation between adversarial examples with original
data, the loss decreases and converges rapidly. Both the results in
Table 1 and Fig. 3 can corroborate the high learning efficiency of the
proposed DACM. Moreover, Table 2 shows the transferability of the
adversarial examples among different code lengths. The adversarial
examples learned by the network built for producing 32-bit hash
codes can also make a successful attack on other target models used
to produce different code length hash codes, such as 8, 16, and 64
bits.

Modality-Related Examples. After filtering out the modality-
unrelated component that obstructs building the correlations across

different modalities, we obtain themodality-related examples which
will be utilized to train the target models. Table 3 provides explana-
tions about the efficiency of the learned modality-related examples.
The target models after training with the modality-related examples
are denoted as DCMH+, SSAH+, and PRDH+, respectively. Then
we validate their ability to defend against adversarial examples that
created using 8-bit, 16-bit, 32-bit, and 64-bit hash codes, respec-
tively. It should be noted that we only replace the training samples
with the learned modality-related examples while keeping the rest
training settings consistent with the regular training. Comparing
the results between Table 1 and the results of 32-bits in Table 3, we
take the target model DCMH evaluated onMIRFlickr-25K dataset as
an example. It can be seen that DCMH+-A achieves more than 18%
accuracy increasing on two retrieval tasks when resisting adver-
sarial examples. Similarly, the performances of SSAH+-A are also
boosted up to 0.610(0.652) from 0.449(0.405). Second, we further
evaluate the target cross-modal network that is retrained with the
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Table 3: Comparison in defending against adversarial examples in terms ofMAP scores of two retrieval tasks onMIRFlickr-25K
and NUS-WIDE datasets.

Task Method MIRFlickr-25K NUS-WIDE
8 16 32 64 8 16 32 64

I → T
DCMH+-A 0.641 0.643 0.649 0.664 0.470 0.468 0.465 0.495
SSAH+-A 0.629 0.639 0.610 0.606 0.435 0.459 0.445 0.456
PRDH+-A 0.649 0.651 0.665 0.666 0.505 0.499 0.457 0.465

T→ I
DCMH+-A 0.618 0.629 0.644 0.633 0.468 0.482 0.508 0.520
SSAH+-A 0.630 0.673 0.652 0.634 0.483 0.571 0.539 0.482
PRDH+-A 0.613 0.620 0.627 0.623 0.493 0.510 0.517 0.525

Table 4: Regular cross-modal retrieval comparison in terms of MAP of two retrieval tasks on MIRFlickr-25K and NUS-WIDE
datasets. The target models have been trained with modality-related examples.

Task Method MIRFlickr-25K NUS-WIDE
8 16 32 64 8 16 32 64

I → T
DCMH+-R 0.668 0.690 0.703 0.699 0.505 0.537 0.568 0.595
SSAH+-R 0.717 0.735 0.742 0.730 0.596 0.617 0.633 0.639
PRDH+-R 0.681 0.697 0.710 0.710 0.554 0.581 0.605 0.615

T → I
DCMH+-R 0.675 0.693 0.710 0.703 0.523 0.547 0.586 0.603
SSAH+-R 0.732 0.745 0.749 0.723 0.613 0.631 0.644 0.642
PRDH+-R 0.688 0.705 0.715 0.706 0.564 0.593 0.609 0.616
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Figure 4: PR and Precision@1000 curves evaluated on MIRFlickr-25K and NUS-WID datasets.

modality-related examples on the regular cross-modal retrieval. As
shown in Table 4, obviously, the target network can also achieve
comparable performance with that trained on the original data. In
other words, taking the modality-related examples learned from
our DACM to train a target model, the robustness and the efficiency
of this model are improved concurrently.

Furthermore, the transferability of the modality-related exam-
ples can be evaluated by comparing the Table 1 with Table 3 (except
for the 32-bits column). We find that the target models trained with

the modality-related examples learned for 32-bit hash codes also
hold the defense ability to the adversarial examples learned under
other code lengths. Therefore, the effectiveness of our DACM is
demonstrated from the entire results in Table 1, Table 3, and Ta-
ble 4. In addition, Fig. 4 also presents the efficiency of the proposed
method from the tendency of PR and Precision@1000 curves, where
we show the performances of the target models that execute regular
cross-modal retrieval and defense against adversarial query exam-
ples. Comparing with the original cross-modal data, the learned
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Figure 5: Comparison among the visualizations for original cross-modal data (top), adversarial example (middle), andmodality-
related example (bottom).

Figure 6: Evaluation of the targeted DCMH trained using dif-
ferent modality-related examples that generated under dif-
ferent disentangled strengths {𝜖𝑣, 𝜖𝑡 } on MIRFlickr-25K.

cross-modal adversarial examples can decrease the retrieval accu-
racy with a great margin. In addition, the performances of the target
models trained with modality-related examples are also provided.
It can be seen that training target models with the modality-related
examples can significantly promote their ability of defense against
adversarial attacks.

4.3 Further Analysis
During the adversarial perturbations learning, to learn the imper-
ceptible perturbations, we respectively set the 𝜖𝑣 = 8 and 𝜖𝑡 = 0.03
for image and text modalities. Some visualization results are pro-
vided in the first column (Fig. 5), including the original cross-modal
data, the learned adversarial examples, as well as the modality-
related examples.We can find that the ability of the proposed DACM
in disentangling cross-modal related representation is severely com-
promised under such strict constraints. Therefore, we additionally
evaluate the proposed DACM with an increasing amplitude of 𝜖𝑣
and 𝜖𝑡 . To be specific, we vary 𝜖∗ as 𝜖∗ = 1

16𝑀
∗, 𝜖∗ = 1

8𝑀
∗, and

𝜖∗ = 1
2𝑀

∗, respectively, where ∗ ∈ {𝑣, 𝑡}, 𝑀𝑣 = 255, and 𝑀𝑡 = 1.
Following different magnitude scales of {𝜖𝑣, 𝜖𝑡 }, we learn corre-
sponding adversarial examples and modality-related examples. The

corresponding results are also provided in Fig. 5. With the increase
of the disentangled strength of perturbations, the discrepancies
between the original data and the adversarial examples as well as
the modality-related examples become more distinct, especially for
the text modality. As shown in Fig. 6, with the increasing ampli-
tude of 𝜖𝑣 and 𝜖𝑡 , although a little trade-off of the performance is
introduced into the regular retrieval, DACM can facilitate the build-
ing correlation across different modalities, and thus can further
promote the reliability of the cross-modal networks.

5 CONCLUSIONS
In this work, a novel DACM algorithm was developed for designing
adversarial examples to build correlations across different modali-
ties. By dividing cross-modal data into the modality-related compo-
nent and modality-unrelated counterpart, we proposed to create
adversarial examples to disentangle the modality-related compo-
nent from different modality data. In addition, the adversarial exam-
ples and the modality-related examples are simultaneously learned
and yielded in a unified framework. Finally, a task on cross-modal
hashing retrieval was conducted to evaluate the proposed DACM.
Extensive experiments on two public datasets with multiple target
networks demonstrate that DACM can effectively generate adver-
sarial examples and modality-related examples. The adversarial
examples always induce the retrieval models into retrieving seman-
tically irrelevant results, but the modality-related examples can
significantly boost the robustness of the retrieval system. To the
best of our knowledge, DACM provides a fresh look at adversarial
examples as well as their effects on exploiting cross-modal corre-
lations. Nonetheless, this is still at an early stage, where both an
effective adversarial perturbation learning method and its capacity
in bridging different modalities on other cross-modal tasks should
be explored.

Research Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

428



ACKNOWLEDGMENTS
This work is supported in part by the Key R&D Program-The Key
Industry Innovation Chain of Shaanxi under Grant 2019ZDLGY03-
02-01, and in part by the National Key R&D Program of China under
Grant 2017YFE0104100 and 2016YFE0200400.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In OSDI. 265–283.

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In
ICCV. 2425–2433.

[3] Juan C Caicedo and Svetlana Lazebnik. 2015. Active object localization with deep
reinforcement learning. In CVPR. 2488–2496.

[4] Yue Cao, Bin Liu, Mingsheng Long, and Jianmin Wang. 2018. Cross-Modal
Hamming Hashing. In ECCV. 207–223.

[5] Yue Cao, Mingsheng Long, Jianmin Wang, Qiang Yang, and Philip S. Yu. 2016.
Deep Visual-Semantic Hashing for Cross-Modal Retrieval. In KDD. 1445–1454.

[6] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of
neural networks. In SP. 39–57.

[7] Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Cho-Jui Hsieh. 2017.
Attacking Visual Language Grounding with Adversarial Examples: A Case Study
on Neural Image Captioning. arXiv preprint arXiv:1712.02051 (2017).

[8] Zerui Chen, Yan Huang, and Liang Wang. 2019. Augmented Visual-Semantic
Embeddings for Image and Sentence Matching. In ICIP. 290–294.

[9] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yan-
tao Zheng. 2009. NUS-WIDE: a real-world web image database from National
University of Singapore. In CIVR. 48.

[10] Cheng Deng, Zhaojia Chen, Xianglong Liu, Xinbo Gao, and Dacheng Tao. 2018.
Triplet-based deep hashing network for cross-modal retrieval. IEEE Transactions
on Image Processing 27, 8 (2018), 3893–3903.

[11] Cheng Deng, Erkun Yang, Tongliang Liu, Jie Li, Wei Liu, and Dacheng Tao. 2019.
Unsupervised semantic-preserving adversarial hashing for image search. IEEE
Transactions on Image Processing 28, 8 (2019), 4032–4044.

[12] Cheng Deng, Erkun Yang, Tongliang Liu, and Dacheng Tao. 2019. Two-stream
deep hashing with class-specific centers for supervised image search. IEEE
Transactions on Neural Networks and Learning Systems (2019).

[13] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu,
and Jianguo Li. 2018. Boosting adversarial attacks with momentum. In CVPR.
9185–9193.

[14] Vijetha Gattupalli, Yaoxin Zhuo, and Baoxin Li. 2019. Weakly Supervised Deep
Image Hashing through Tag Embeddings. In CVPR. 10375–10384.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In NeurIPS. 2672–2680.

[16] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
harnessing adversarial examples. In ICLR.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[18] Mark J Huiskes and Michael S Lew. 2008. The MIR flickr retrieval evaluation. In
MIPR. 39–43.

[19] Qing-Yuan Jiang and Wu-Jun Li. 2017. Deep cross-modal hashing. In CVPR.
3232–3240.

[20] Qing-Yuan Jiang and Wu-Jun Li. 2019. Discrete Latent Factor Model for Cross-
Modal Hashing. IEEE Transactions on Image Processing 28, 7 (2019), 3490–3501.

[21] Andrej Karpathy, Armand Joulin, and Li F Fei-Fei. 2014. Deep fragment embed-
dings for bidirectional image sentence mapping. In NeurIPS. 1889–1897.

[22] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. In ICLR workshop.

[23] Chao Li, Cheng Deng, Shangqian Gao, De Xie, and Wei Liu. 2019. Cross-Modal
Learning with Adversarial Samples. In NeurIPS. 10791–10801.

[24] Chao Li, Cheng Deng, Ning Li, Wei Liu, Xinbo Gao, and Dacheng Tao. 2018.
Self-Supervised Adversarial Hashing Networks for Cross-Modal Retrieval. In
CVPR. 4242–4251.

[25] Maosen Li, Cheng Deng, Tengjiao Li, Junchi Yan, Xinbo Gao, and Heng Huang.
2020. Towards Transferable Targeted Attack. In CVPR. 641–649.

[26] Yeqing Li, Wei Liu, and Junzhou Huang. 2018. Sub-Selective Quantization for
Learning Binary Codes in Large-Scale Image Search. IEEE transactions on pattern
analysis and machine intelligence 40, 6 (2018), 1526–1532.

[27] Zijia Lin, Guiguang Ding, Mingqing Hu, and Jianmin Wang. 2015. Semantics-
Preserving Hashing for Cross-View Retrieval. In CVPR.

[28] Wei Liu, CunMu, Sanjiv Kumar, and Shih-Fu Chang. 2014. Discrete graph hashing.
In NIPS. 3419–3427.

[29] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. 2012. Su-
pervised hashing with kernels. In CVPR. IEEE, 2074–2081.

[30] Wei Liu, JunWang, Sanjiv Kumar, and Shih-Fu Chang. 2011. Hashing with graphs.
In ICML. 1–8.

[31] Wei Liu, JunWang, YadongMu, Sanjiv Kumar, and Shih-Fu Chang. 2012. Compact
hyperplane hashing with bilinear functions. In ICML. 467–474.

[32] Wei Liu and Tongtao Zhang. 2016. Multimedia hashing and networking. IEEE
MultiMedia 23, 3 (2016), 75–79.

[33] Xuanwu Liu, Guoxian Yu, Carlotta Domeniconi, Jun Wang, Yazhou Ren, and
Maozu Guo. 2019. Ranking-based Deep Cross-modal Hashing. In AAAI.

[34] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

[35] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan Yuille. 2015.
Deep captioning with multimodal recurrent neural networks (m-rnn). In ICLR.

[36] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. 2017. Universal adversarial perturbations. In CVPR. 1765–1773.

[37] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
Deepfool: a simple and accurate method to fool deep neural networks. In CVPR.
2574–2582.

[38] Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images. In CVPR.
427–436.

[39] Vicente Ordonez, Girish Kulkarni, and Tamara L Berg. 2011. Im2text: Describing
images using 1 million captioned photographs. In NeurIPS. 1143–1151.

[40] Jose Costa Pereira, Emanuele Coviello, Gabriel Doyle, Nikhil Rasiwasia, Gert RG
Lanckriet, Roger Levy, and Nuno Vasconcelos. 2013. On the role of correlation
and abstraction in cross-modal multimedia retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence 36, 3 (2013), 521–535.

[41] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,
and Honglak Lee. 2016. Generative adversarial text to image synthesis. In ICML.
1060–1069.

[42] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. 2015. Supervised
discrete hashing. In CVPR. 37–45.

[43] Chao Zhang Shupeng Su, Zhisheng Zhong. 2019. Deep Joint-Semantics Re-
constructing Hashing for Large-Scale Unsupervised Cross-Modal Retrieval. In
ICCV.

[44] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks
for large-scale image recognition. In ICLR.

[45] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. One pixel
attack for fooling deep neural networks. IEEE Transactions on Evolutionary
Computation (2019).

[46] Mengying Sun, Fengyi Tang, Jinfeng Yi, Fei Wang, and Jiayu Zhou. 2018. Identify
susceptible locations in medical records via adversarial attacks on deep predictive
models. In ACM SIGKDD. ACM, 793–801.

[47] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[48] Bokun Wang, Yang Yang, Xing Xu, Alan Hanjalic, and Heng Tao Shen. 2017.
Adversarial cross-modal retrieval. In ACM MM. 154–162.

[49] D. Xie, C. Deng, C. Li, X. Liu, and D. Tao. 2020. Multi-Task Consistency-Preserving
Adversarial Hashing for Cross-Modal Retrieval. IEEE Transactions on Image
Processing 29 (2020), 3626–3637.

[50] Peixi Xiong, Huayi Zhan, Xin Wang, Baivab Sinha, and Ying Wu. 2019. Visual
Query Answering by Entity-Attribute Graph Matching and Reasoning. In CVPR.
8357–8366.

[51] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang,
and Xiaodong He. 2018. Attngan: Fine-grained text to image generation with
attentional generative adversarial networks. In CVPR. 1316–1324.

[52] Xiaojun Xu, Xinyun Chen, Chang Liu, Anna Rohrbach, Trevor Darell, and Dawn
Song. 2017. Can you fool AI with adversarial examples on a visual turing test.
arXiv preprint arXiv:1709.08693 (2017).

[53] Xiaojun Xu, Xinyun Chen, Chang Liu, Anna Rohrbach, Trevor Darrell, and Dawn
Song. 2018. Fooling Vision and Language Models Despite Localization and
Attention Mechanism. In CVPR. 4951–4961.

[54] Yan Xu, Baoyuan Wu, Fumin Shen, Yanbo Fan, Yong Zhang, Heng Tao Shen,
and Wei Liu. 2019. Exact Adversarial Attack to Image Captioning via Structured
Output Learning with Latent Variables. In CVPR. 4135–4144.

[55] Erkun Yang, Cheng Deng, Chao Li, Wei Liu, Jie Li, and Dacheng Tao. 2018. Shared
predictive cross-modal deep quantization. IEEE Transactions on Neural Networks
and Learning Systems 29, 11 (2018), 5292–5303.

[56] Erkun Yang, Cheng Deng, Wei Liu, Xianglong Liu, Dacheng Tao, and Xinbo Gao.
2017. Pairwise relationship guided deep hashing for cross-modal retrieval. In
AAAI.

[57] Erkun Yang, Tongliang Liu, Cheng Deng, Wei Liu, and Dacheng Tao. 2019. Distill-
Hash: Unsupervised Deep Hashing by Distilling Data Pairs. In CVPR. 2946–2955.

[58] Xi Zhang, Hanjiang Lai, and Jiashi Feng. 2018. Attention-Aware Deep Adversarial
Hashing for Cross-Modal Retrieval. In ECCV. 591–606.

Research Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

429


	Abstract
	1 Introduction
	2 Related Works
	3 Proposed DACM
	3.1 Problem Definition
	3.2 Disentangled Adversarial Example Learning
	3.3 Optimization
	3.4 Implementation Details

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Analysis
	4.3 Further Analysis

	5 Conclusions
	Acknowledgments
	References



